A golden ticket to smaller electronics

Osaka University researchers used sputtered silver to bond copper electrodes as part of 3D integrated circuits. By gently annealing the silver layers, enough surface roughness was created to connect the layers without added pressure. This work may lead to cheaper and smaller electronic devices that use less energy.

Fig.1 (Right) SEM image of fabricated 20-μm Cu-Ag bumps, (Middle) Schematic drawing of the prepared bump cross-section, (Left) Schematic drawing of the bonded 20-μm Cu-Ag bump device.

Researchers at Osaka University demonstrate a new method for creating three-dimensional integrated circuit connections that works at low temperatures and does not require external pressure, which may lead to inexpensive and energy efficient electronic devices

Osaka, Japan – Scientists from the Flexible 3D-System Integration Laboratory at Osaka University developed a new method for the direct three-dimensional bonding of copper electrodes using silver, which can reduce the cost and energy requirements of new electronic devices. This work may help in the design of next-generation smart devices that are more compact and use less electricity.

Three-dimensional integrated circuits are playing an increasingly important role in electronic devices. Compared with conventional 2D circuits, these architectures can save both space and reduce the material required for interconnecting wires. However, the ability to form reliable 3D connections requires new methods compared with the mature technologies in use for convention integrated circuits.

Fig.2 (Right) Cross-sectional image of bonded Cu-Ag bump, (Left) Magnified view of the interface of the bonded Cu-Ag sample.

Now, a team of researchers at Osaka University showed how to directly connect copper electrode “bumps” using silver layers. “Our process can be performed under gentle conditions, at relatively low temperatures and without added pressure, but the bonds were able to withstand over one thousand cycles of thermal shocking from -55 to 125 ºC,” first author Zheng Zhang says. In this new method, silver is first sputtered onto the two copper surfaces to be bonded at room temperature. Then, heat was applied to anneal the silver layers, which caused the surface to undergo microscopic changes in a process called “stress migration”. The release of the stress during annealing led to surface roughening, which ensured a sufficient effective area between the two silver layers. As a result, bonding could be accomplished without applied pressure even at a comparative low annealing temperature. Permanent connections as small as 20 micrometers could be realized in just ten minutes this way. This process also requires only moderate temperatures (180 °C) and can work under atmospheric conditions.

 The team was able to confirm the surface roughness of the sputtered and annealed chips using images from by scanning electron microscopy and atomic force microscopy. “This technology is expected to contribute to chips with a high density of interconnects and advanced 3D packaging,” senior author Katsuaki Suganuma says. The results of this research were published at the IEEE 72nd Electronic Components and Technology Conference (ECTC) as “Ag-Ag direct bonding via a pressureless, low-temperature, and atmospheric stress migration bonding method for 3D integration packaging.”


The study, “Ag-Ag direct bonding via a pressureless, low-temperature, and atmospheric stress migration bonding method for 3D integration packaging,” was presented in EEE 72nd Electronic Components and Technology Conference (ECTC).

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/en/research/2022/20220620_1

Published: 24 Jun 2022


Contact details:

Global Strategy Unit

1-1 Yamadaoka, Suita,Osaka 565-0871, Japan

News topics: 
Academic discipline: 
Content type: 

Meeting: EEE 72nd Electronic Components and Technology Conference (ECTC)

Funding information:

Funded by: New Energy and Industrial Technology Development Organization (NEDO)