Using machine learning to save lives in the ER

Researchers from Osaka University used machine learning to identify subgroups of trauma patients who are more likely to survive their injuries if treated with tranexamic acid. This treatment controls bleeding and thereby prevents death from hemorrhage. The team also identified subgroups of trauma patients who do not benefit from tranexamic acid. These findings should help guide treatment decisions after traumatic injury and provide trauma patients with more personalized care.

Research overview


Researchers from Osaka University use machine learning to identify patients more likely to survive traumatic injury if treated with tranexamic acid.

Osaka, Japan – Worldwide, approximately 4.5 million people die of traumatic injury every year. Many of these patients die from blood loss.

Early treatment with a drug called tranexamic acid stops excessive bleeding by reducing the body’s ability to break down blood clots. However, tranexamic acid can cause unnecessary drug side effects in patients who do not need it, so it is necessary to select truly effective target patients based on objective criteria.

Now, in a study published in Critical Care, researchers from Osaka University have addressed this treatment challenge by identifying subgroups of trauma patients who are more likely to survive if treated with tranexamic acid. The team found these subgroups by examining trauma patients who shared similar traits (also known as phenotypes).

“We identified eight different trauma phenotypes, and then we evaluated the benefits of tranexamic acid treatment based on these phenotypes,” explains lead author Jotaro Tachino. “We found subgroups of patients with significantly lower in-hospital mortality when they received tranexamic acid. We also found subgroups of patients who received no benefit from treatment.”

The team used machine learning model to help categorize trauma patients into these subgroups. Using this technique, researchers processed information from over 50,000 patients in the Japan Trauma Data Bank and then analyzed patterns associated with trauma, treatment, and survival.

The team found an association between trauma phenotypes and in-hospital mortality, indicating that treatment with TXA could potentially influence this relationship.

The researchers say “Trauma patients are a heterogeneous population with injuries that vary greatly in type and severity. This makes it difficult to predict how effective a treatment will be in an individual patient”. “We hope our results will help individual trauma patients receive more personalized care as well as improve the quality of care for all trauma patients.”

Given the high death toll from traumatic injury, strategies that improve survival are essential for patients and their families. This research is a key step in optimizing tranexamic acid use in trauma patients.


The article, “Association between tranexamic acid administration and mortality based on the trauma phenotype: a retrospective analysis of a nationwide trauma registry in Japan,” was published in Critical Care at DOI:

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.


Published: 26 Mar 2024


Contact details:

Global Strategy Unit

1-1 Yamadaoka, Suita,Osaka 565-0871, Japan

News topics: 
Content type: 
Funding information:

Japan Society for the Promotion of Science