Flip-flopping cholesterol in the cell membrane

Revelations about the mechanisms of two key proteins which maintain the asymmetric distribution of cholesterol within the cell membrane could help understand and treat diseases linked to its imbalance

Cholesterol transporter protein ABCA1 at the plasma membrane, and cholesterol transfer protein Aster-A at the endoplasmic reticulum membrane, function cooperatively to keep the amount of cholesterol (cargo) in the inner plasma membrane low.

Cholesterol is an essential component of the membrane surrounding every human cell, despite its poor reputation as a health concern when its blood levels are too high. The key to health is having the right amount of cholesterol in the right places. Maintaining appropriate levels is known as cholesterol homeostasis. Researchers at the Institute for Integrated Cell-Material Science (iCeMS) at Kyoto University in Japan have gained new insights into how cells achieve cholesterol homeostasis within the cell membrane. The findings are published in the Journal of Biological Chemistry.

Cholesterol molecules are packed inside the cell membrane at levels that control membrane fluidity, thickness and flexibility. These characteristics are vital for making the membrane a selective semi-permeable barrier, with crucial control over what substances can travel into and out of cells.

“Disturbances in cholesterol homeostasis can lead to some serious diseases, but it has been unclear how cells detect and respond to changes in cholesterol levels in the cell membrane,” says iCeMS cellular biochemist Kazumitsu Ueda.

Ueda and his colleague Fumihiko Ogasawara have now revealed a vital role of two proteins in maintaining an appropriate distribution of cholesterol inside cells and their membranes.

The first protein, called ATP-binding cassette A1 (ABCA1) translocates cholesterol within the membrane. The cell membrane is composed of a lipid bilayer, with inner and outer layers of fatty molecules (phospholipids, cholesterol, and glycolipids) oriented in opposite directions. A key new insight reported in this current study is that the ABCA1 protein controls the transfer of cholesterol molecules from the inner layer to the outer layer. The researchers call this process ‘cholesterol flopping’. Their previous work explored this protein’s role in facilitating cholesterol transfer through the bloodstream in the form of high-density lipoprotein (HDL), sometimes called good cholesterol.

Ueda and Ogasawara also uncovered details of how a second protein – cholesterol transfer protein Aster-A – acts cooperatively with ABCA1 to maintain the crucial asymmetric distribution of cholesterol, with more cholesterol in the outer layer of the cell membrane than the inner. Aster-A is located inside the cell embedded in the endoplasmic reticulum. When there is an increase in the cholesterol level in the inner layer of the cell membrane, Aster-A forms a bridge transferring cholesterol from the cell membrane to the endoplasmic reticulum.

The researchers describe how the asymmetric distribution of cholesterol in the membrane allows it to serve a signalling function, influencing other cellular processes in ways that depend on the degree of asymmetry. They suggest that this explains why defects in the normal functioning of ABCA1 can cause faulty molecular signalling that may lead to cancer and autoimmune diseases.

“The progress we have made needs to be built on to better understand all the implications of these cholesterol homeostasis processes in both health and disease,” Ueda concludes. He hopes this may eventually open new avenues to treating diseases linked to cholesterol imbalance.

 

###

 

 

DOI:
https://doi.org/10.1016/j.jbc.2022.102702

 

About Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS):
At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired materials.
https://www.icems.kyoto-u.ac.jp/

 

For more information, contact:
I. Mindy Takamiya/Christopher Monahan
[email protected]

 

Published: 12 Dec 2022

Contact details:

Communication Design Unit

4th floor, iCeMS Main Bldg Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan

+81-75-753-9764
Country: 
Academic disciplines: 
Content type: